Cooking High Protein Foods

DAIRY PRODUCTS EGGS

Review of Functions

- Form protein gels
- Texturize
- Emulsify
- Form foams
- Develop gluten

High-Protein Foods

 Damaged by cooking temperatures that are too high or cooking for too long

• Rapid denaturation of protein when heated

× Review

- Denaturation : Any change of the shape of protein without breaking peptide bonds
- Protein molecules tend to shrink and lose water
- Too much heat = dry, rubbery, tough products

DAIRY PRODUCTS

DAIRY PRODUCTS

Milk Proteins

Casein

 Will not coagulate unless high concentrations of salt or acids are present

Whey Protein

- Formal names: Lactalbumin and lactoglobulin
- Coagulated by heat and responsible for film on bottom and sides of containers of heated milk

Problems with Preparing Dairy Products

• Scorching:

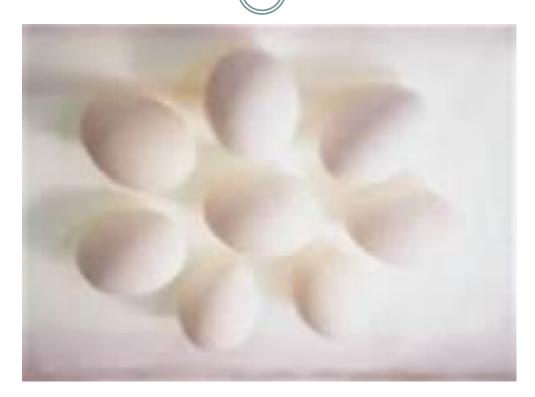
- Proteins clumps formed by the heat sink and burn to the bottom of the pan
- Whey proteins coagulate at 66°C (150°F)
 - × Prevention:
 - Constant stirring

- Keeps whey proteins from sinking to the bottom
- Cook at lower temperatures
- Cooking milk-based products in a double boiler
 - Keeps temperature of the product lower than if it were a pan in direct contact with the heat source

Problems with Preparing Dairy Products

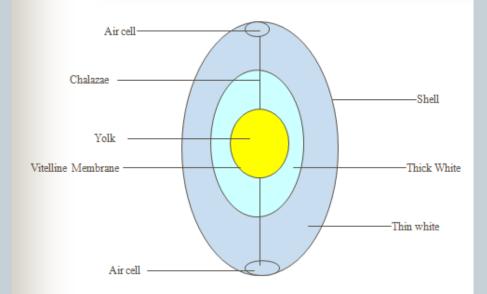
• Curdling:

• Occurs when acid causes the casein molecules in milk to unfold and stick together



Tomato Soup Experiment

Note: You can access this experiment on the Food Science page on <u>www.lamoehr.com</u> under the Protein Unit's, "Other Options."


You can do this experiment with 2 or more variations for extra credit- just let me know and I can give you what options would be best for comparison ©

EGG PRODUCTS

EGG- Composition/Nutrition

- Whole Eggs
 - 75% water
 12% protein
 10% fat
 1% carbohydrate
 1% minerals

Egg White

Basic parts of the egg

- o 88% water, 4g protein, 0g fat, trace minerals
- Egg Yolk

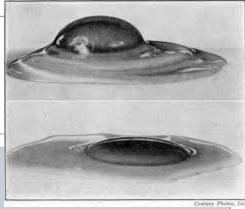
o 49% water, 3g protein, 5g fat

Deterioration of Eggs

• Loss of CO₂ through the eggshell

• As CO₂ moves through the shell, the pH changes from neutral to basic, causing proteins to break apart

• Part of water moving into egg yolk


- Stretches and weakens the membrane surrounding the yolk
- Makes separating yolks from albumen more difficult
- More difficult to turn a fried egg without breaking the yolk

Signs of Deteriorated Eggs

- When broken on to a plate, the yolk is flat
- Amount of thin white increases, and thick white decreases
- Air cells become larger
- When candled, yolks are not in the center of the egg

• Prevention:

- Egg producers apply special spray to reduce loss of CO₂ and moisture
- o Lengthens shelf life

Review: Eggs in Food Preparation

- Eggs coagulate in heat and can be used to thicken products or for gel formation.
- Eggs coagulate at about 140 degrees F.
- Egg foams can be produced from beating the egg whites into a foam, greater foam formation with increased thick whites.
- Eggs can function as emulsifiers.
 Lecithin, an emulsifier, is found in eggs.

EGGS- Other important factors

• Albumen is easily denatured by heat

• If eggs are heated at high temperatures or for long periods, coagulation will be more extensive = firm, tough egg

Best practice:

- Low temp OR
- Short cooking time
- Egg whites will coagulate while remaining soft and tender

Egg Substitutes

- Egg substitutes contain no egg yolk.
- Egg substitutes are 80% egg white.
- Various ingredients are used to create yolk like properties in egg substitutes:
 - × Corn oil and nonfat dry milk
 - × Soy protein isolate
 - × Soybean oil
 - × Egg white solids calcium caseinate

